博客
关于我
Torch和Numpy——查看形状类型
阅读量:555 次
发布时间:2019-03-09

本文共 621 字,大约阅读时间需要 2 分钟。

基于PyTorch和NumPy的数组操作示例

代码解析与输出结果

import numpy as npimport torch# 创建numpy配准数组a = np.array([[1, 2], [3, 4]])print("numpy数组基本信息", a.shape, np.shape(a), a.dtype)print("----------------------------")# 将numpy数组转换为PyTorch tensorb = torch.tensor([[1, 2], [3, 4]])print("PyTorch tensor基本信息", b.shape, b.size(), b.type())print("-------------------------------------------------")# 将PyTorch tensor转换为浮点类型b = b.float()print("转换后的PyTorch tensor类型", b.dtype)

运行结果说明

运行上述代码可获得以下结果:

  • Numpy数组显示出:

    • 数据维度为2x2
    • 元素类型为int32
  • PyTorch tensor显示出:

    • 数据维度同样为2x2
    • 元素类型为LongTensor
    • 转换为float类型后,数据类型变为float32
  • 这个简单的示例展示了PyTorch与NumPy在数组操作方面的一些核心差异,包括数据类型和内存管理。

    转载地址:http://mdypz.baihongyu.com/

    你可能感兴趣的文章
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>